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ABSTRACT
Identification of those genes that might anticipate the clini-
cal behavior of different types of cancers is challenging due
to availability of a smaller number of patient samples com-
pared to huge number of genes, and the noisy nature of
microarray data. After selection of some good genes based
on signal-to-noise ratio, unsupervised learning like cluster-
ing and supervised learning like k-nearest neighbor (kNN)
classifier are widely used in cancer researches to correlate
the pathological behavior of cancers with the gene expres-
sion levels’ differences in cancerous and normal tissues. By
applying adaptive searches like Probabilistic Model Build-
ing Genetic Algorithm (PMBGA), it may be possible to get
a smaller size gene subset that would classify patient sam-
ples more accurately than the above methods. In this paper,
we propose a new PMBGA based method to extract infor-
mative genes from microarray data using Support Vector
Machine (SVM) as a classifier. We apply our method to
three microarray data sets and present the experimental re-
sults. Our method with SVM obtains encouraging results
on those data sets as compared with the rank based method
using kNN as a classifier.
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I.2.6 [ARTIFICIAL INTELLIGENCE]: Learning—Knowl-
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1. INTRODUCTION
In modern clinical neuro-oncology, the right and accu-

rate treatment of patients with cancer depends on accu-
rate diagnoses by using a complex combination of clinical
and histopathological data. In some cases, this task is dif-
ficult or impossible because of atypical clinical presentation
or histopathology [22]. Now many researchers are investi-
gating whether gene expression profiling, coupled with class
prediction methodology, could be used to classify different
types of tumor samples in a manner more objective, explicit
and consistent than standard pathology. The hypothesis be-
hind this research is that gene expression levels are affected
by a large number of environmental factors, including tem-
perature, stress, light, and other signals, that lead to change
in the level of hormones and other signaling substances, and
many or all human diseases may be accompanied by specific
changes in the expression levels of some genes [23].
Gene expression is the process by which mRNA and even-

tually protein is synthesized from the DNA template of each
gene. mRNA is a single-stranded molecule consisting of four
DNA bases tethered to a sugar-phosphate backbone. The
portion of each gene that is represented as mRNA is known
as coding sequence for that gene. Since mRNA is an ex-
act copy of DNA coding regions, genomic analysis at the
mRNA level is used as a measure of gene expression. In
other words, gene expression level indicates the amount of
mRNA produced in a cell during protein synthesis; and is
thought to be correlated with the amount of corresponding
protein made.
Recent advances in DNA microarray technology allow sci-

entists to measure expression levels of thousands of genes
simultaneously and determine whether those genes are ac-
tive, hyperactive or silent in normal or cancerous tissues.
Since these microarray devices generate huge amount of raw
data, new analytical methods must be developed to iden-
tify those genes that have distinct signatures of expression
levels in cancerous tissues over normal or other types of tis-
sues. Widely used technique in cancer research to extract
some informative genes from a microarray data set is the
ranking of genes based on signal-to-noise (S2N) statistics
[9]. The classification of the samples is done by first build-
ing a temporary data set by taking the gene expressions of
the selected genes and then applying a suitable classifier.
In this context, k-nearest neighbors [4, 16, 24, 7], cluster-
ing [3, 8], support vector machine [7, 10, 22], etc. have
been used. The problem of this approach of gene selection
is that it totally ignores the effects of the selected genes on
the performance of the classifier, whereas an optimal selec-
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tion of genes may not be independent of the algorithm to be
used to construct the classifier. Moreover, it may be pos-
sible to find a smaller size gene subset which will classify
samples more accurately. Recently, there have been used
evolutionary computation methods to identify informative
genes where Golub’s weighted voting classifier [9] has been
used as a part of evaluation function of a gene subset [19,
20, 6, 1, 11]. Evolutionary computation methods have ad-
vantage over ranking based gene selection method because
different combinations of genes are evaluated in evolutionary
computations through generation of different individuals of
a population.
In this paper, we propose a new adaptive search method

to extract informative genes from microarray data. Our
method belongs to the category Probabilistic Model Build-
ing Genetic Algorithm [21], a variant of Genetic Algorithm.
We use Support Vector Machine(SVM) [25] as a classifier.
SVM is well suited to the analysis of broad patterns of gene
expressions from DNA microarray data. It can easily deal
with a large number of genes with a smaller number of
training patterns. Our objective in this paper is to select
a smaller size gene subset that will produce higher classi-
fication accuracy. We test our proposed method on three
microarray data sets of binary and multi-class classification
problems. Our method outperforms rank based gene selec-
tion method in respect of classification accuracy. Our con-
tribution in this paper is to introduce a new gene selection
method and to present our findings on the microarray data
which may help the biologists/medical scientists to select a
set of genes which would be biologically more relevant to
cancer diagnosis. Since our paper is on the biological ap-
plications of genetic and evolutionary computations, we will
emphasize more on application details rather than on theo-
retical analysis.

2. NOTATION AND TERMS
Before we describe our method, we give notations that

will be used later. We will use the term individual to mean
a gene subset which may be a possible solution of the prob-
lem at hand. If a microarray data set of l samples conatins
expression levels of n genes, each individual will consist of
n random binary variables {X1,X2, . . . , Xn}. Let X denote
the set of these random variables and x be the vector of
values of X. If a gene i is selected, the corresponding vari-
able Xi will be 1, otherwise it is set to 0. Let p(xi, t) be
the probability of Xi being 1 in a population of individuals
at generation t and q(xi, t) is the marginal distribution of
Xi. p(x, t) and q(x, t) are the probability and marginal dis-
tribution vectors of X at generation t, N is the number of
individuals in a population, M is the number of individu-
als selected from the population for calculation of marginal
probabilities of the variables, and Q is the number of off-
spring to produce in a generation. We will use the notation
xj

i to denote the value of the variable Xi in j
th individual.

Other notations and terms (if any) will be described at the
places of their use.

3. GENE SELECTION ALGORITHM
Our proposed method of gene selection is based on Prob-

abilistic Model Building Genetic Algorithm (PMBGA). In-
stead of applying crossover and mutation operators, a PM-
BGA generates new possible solutions (individuals) by sam-

pling the probability distribution which is calculated from
the selected solutions of previous generations. Different PM-
BGAs assume different structures of variables and calculate
probability distribution accordingly. A good review on PM-
BGAs (also known as Estimation of Distribution Algorithms
[15]) can be found in [14, 17, 18].
The success of a traditional Genetic Algorithm (GA) de-

pends on the appropriate choice of crossover and mutation
operators; similarly, the success of a PMBGA depends on its
capability of learning a structure of the variables from the
selected individuals. The structure of genes of a microarray
data set can be described by a Bayesian network. But learn-
ing of a Bayesian network from data is NP-hard problem and
it would be virtually impossible to build a network structure
containing thousands of genes. On the other hand, if the re-
combination operators (especially mutation operator) of a
GA are not carefully designed, it would be very difficult to
generate compact size gene subsets and take much time to
calculate classification accuracy (training and test) of big-
ger size gene subsets. These have motivated us to design a
method that would successively reduce the number of genes
of different individuals but keep the diversity of the popula-
tion in different generations. We will call our gene selection
method Random Probabilistic Model Building Genetic Al-
gorithm (RPMBGA).
In our algorithm, whether a gene would be selected or

not depends on its probability p(xi, t). Initial population of
different gene subsets is generated by setting the probability
p(xi, t) of each gene being selected to 0.5 and applying the
following decision rule:

xj
i =

{
1 if r < p(xi, t);
0 otherwise

(1)

where r ∈ [0, 1] is a random number usually generated by
calling the rand() function of programming languages. Let
us give an example of generating initial population of four
genes in details. Given the initial probability vector p(x, 0) =<
0.5, 0.5, 0.5, 0.5 >, N random vectors are generated. Sup-
pose two of them are R1 =< 0.002, 0.69, 0.045, 0.85 > and
R2 =< 0.73, 0.032, 0.45, 0.21 >. By using decision rule (1),
we get two gene subsets as {1, 0, 1, 0} and {0, 1, 1, 1}.
Next, we need to update the probability vector to gener-

ate new individuals. In PBIL [2], a member of the group
PMBGA, the probability is updated by the weighted aver-
age of p(xi, t) and the marginal distribution of that variable
q(xi, t):

p(xi, t+ 1) = αp(xi, t) + (1− α)q(xi, t) (2)

where α ∈ [0, 1] is called learning rate which is usually fixed
at a value during initialization. In a data set containing
smaller number of genes, PBIL may produce good results
but in microarray data sets containing huge number of genes,
it may not return compact size gene subsets for a fixed value
of α. We have performed experiments on different microar-
ray data sets with different values of α but in each run, it
terminates with many genes selected. In the research on
microarray data, it is assumed that only a few genes an-
ticipate the pathological behavior of cancers. Smaller num-
ber of genes will be selected if we can somehow reduce the
probability of a gene being selected and can keep the search
adaptive. Though theoretical analysis of our method would
not be provided in this paper, we achieve this end by incor-
porating a random variable in (2). So, we update probability
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as follows:

p(xi, t+ 1) = αβip(xi, t) + (1− α)(1− βi)q(xi, t) (3)

where βi ∈ [0, 1] is a random number. For a fixed value
of α, p(xi, t + 1)PBIL ≥ p(xi, t + 1)RPMBGA. Therefore,
our method will select smaller number of genes as compared
to PBIL. The marginal distribution of Xi is calculated as
follows:

q(xi, t) =

∑M
j=1 x

j
i

M
(4)

where xj
i is the value of the variable Xi in j

th individual.
Our overall algorithm is as follows:

PROCEDURE GeneSelection;
Generate initial population of different gene subsets
Evaluate initial population
WHILE (termination criteria NOT Satisfied) DO
Select M promising individuals
Calculate marginal distribution using (4)
Update probability vector according to (3)
for i=1 to Q do //Q=number of offspring
for j=1 to n do

r = rand()
Generate xi

j using decision rule (1)
Evaluate the newly generated gene subsets
Create new population by combining old and new
gene subsets

An example of generating new offspring containing 5 genes
is given below:

1. Initial probability vector:

p(x, 0) =< 0.5, 0.5, 0.5, 0.5, 0.5 > .

Suppose, the initial population contains the following
individuals (fitness follows colon):
(a) 10011:0.59 (b) 11010:0.60 (c) 10001:0.85 (d) 01110:0.75
(e) 00111:0.54

2. Select some individuals based on fitness(b,c,d):
11010:0.60, 10001:0.85 and 01110:0.75.

3. Calculate marginal distribution of each Xi:

q(x, 1) =<
2

3
,
2

3
,
1

3
,
2

3
,
1

3
>

4. Generate a random vector:

β =< 0.10, 0.25, 0.43, 0.67, 0.90 >

5. Update the probability vector using (3)(α = 0.9):

p(x, 1) =< 0.1050, 0.1625, 0.2125, 0.3235, 0.4083 >

6. Generate a set of random vectors:

(a) R1 =< 0.10, 0.054, 0.7, 0.8, 0.77 >

(b) R2 =< 0.23, 0.56, 0.20, 0.15, 0.95 >

(c) R3 =< 0.45, 0.054, 0.17, 0.53, 0.57 >

7. Generate new offspring by comparing p(x, 1) and each
random vector Ri(i = 1, 2, 3) and applying decision
rule (1):
(a)11000 (b)00110 (c)01100

8. Evaluate new offspring and generate new population
by combining old population and new offspring.

3.1 Evaluation of a Gene Subset
A gene subset (individual) is evaluated by its accuracy

on the training data and the number of genes selected in
it. Usually, the value of the fitness function is used as an
evaluation measure. In our method, we calculate the fitness
of an individual as follows:

fitness(x) = w ∗A(x) + (1−w) ∗ (1−NGS(x)/n) (5)

where A(x) is the accuracy on training data using only the
expression values of the selected genes in x, NGS(x) is the
number of genes selected in x and w ∈ [0, 1] is the assigned
weight of accuracy. By (5), we have scalarized the two objec-
tives of gene identification task into one. In our experiments,
we give more emphasis on accuracy rather than on number
of selected genes. Hence in our experiments, w > (1− w).

4. ACCURACY ESTIMATION BY SUPPORT
VECTOR MACHINE

Since the number of available training samples is smaller,
we calculate the accuracy on training data through Leave-
One-Out-Cross-Validation (LOOCV)[12]. In LOOCV, one
sample from the training set is excluded, and rest of the
training samples are used to build the classifier. Then the
classifier is used to predict the class of the left out one, and
this is repeated for each sample in the training set. The
LOOCV estimate of accuracy is the overall number of cor-
rect classifications, divided by the number of samples in the
training set. After completion of one generation, a classi-
fier is built taking the gene expression values of the selected
genes from training data, and then the classes of the test
samples are predicted one by one by taking gene expressions
of the selected genes from test data.
We use Support Vector Machine (SVM) as a classifier.

SVM is a supervised learning technique first discussed by
Vladimir Vapnik [25]. An SVM is a maximum-margin hy-
perplane that lies in some space. Given training examples
labeled as either “+1” or “-1”, a maximum-margin hyper-
plane splits the “+1” and “-1” training examples such that
the distance from the closest examples (the margin) to the
hyperplane is maximized. The use of the maximum-margin
hyperplane is motivated by statistical learning theory, which
provides a probabilistic test error bound which is minimized
when the margin is maximized.
Suppose, the class of each training vector xi ∈ Rn,i =

1, 2, . . . , l is labeled as yi ∈ {+1,−1}. (Readers should not
confuse this xi with the xi in gene selection which takes a
binary value. Here xi is a vector of gene expressions.) The
SVM separates the training vectors in a φ-mapped space
(possibly of infinite dimension) with an error cost C > 0:

min
w,b,ξ

1

2
wT w + C

l∑
i=1

ξi

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi, (6)

ξi ≥ 0, i = 1, . . . , l .

Due to high dimensionality of the vector variable w, usually
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(6) is solved through its Lagrangian dual problem:

min
α
F (α) =

1

2
αT Qα− eTα

subject to

0 ≤ αi ≤ C, i = 1, . . . , l , (7)

yTα = 0 ,

where Qij ≡ yiyjφ(xi)
Tφ(xj) and e is the vector of all ones.

Here,

K(xi,xj) ≡ φ(xi)
Tφ(xj) (8)

is called the kernel function. Some most widely used kernel
functions are: the polynomial kernel K(xi,xj) = (ax

T
i xj +

r)d, the RBF (Radial Basis Function) kernel K(xi,xj) =

e−γ‖xi−xj‖2
, the linear kernel K(xi,xj) = xT

i xj . By defini-
tion of (8), the matrix Q is symmetric and positive definite

(PSD). After (7) is solved, w =
∑l

i=1 yiαiφ(xi); so, the
decision function for any test vector x is

sign(
l∑

i=1

αiyiK(xi,x) + b) (9)

where b is calculated through primal-dual relationship. Af-
ter successful training of SVM, most αi is zero, and the
training patterns with non-zero weights are called support
vector, and those with strict inequality 0 < αi < C are
marginal support vectors. Many resources on SVM, in-
cluding computer implementations can be found at http:

//www.kernel-machines.org.
Though the original SVM was intended for binary classi-

fication, it has been extended to multiclass problem using
‘one-against-all’ and ‘one-against-one’ methods. We will de-
scribe only the second method (‘one-against-one’) of SVM
for multiclass classification due its usage in our experiments.
In ‘one-against-one’ method [13], k(k − 1)/2 classifiers (k=
number of classes) are constructed where each classifier is
trained on data from two classes (i, j) and the class of a test
sample x is predicted by ‘winner-takes-all’ voting strategy.
If the decision function says that x is in class class i, the vote
for the ith class is increased by one, else vote for jth class
is increased by one. Then x is predicted to be in the class
which has the highest votes. In the case that two classes
have identical votes, the one with lower index is selected. In
our experiments, we have used LIBSVM [5] implementation
of SVM.

5. EXPERIMENTS

5.1 Preprocessing of Microarray Data
Usually, microarray data files contain Affymetrix’s GeneChip

software generated gene expression values in scaled average
difference units. There is a P, M, or A label associated
with each average difference expression value which indi-
cates whether RNA for the gene is present, marginal, or
absent, respectively (as determined by the GeneChip soft-
ware). Files are organized such that each column contains
expression levels of different genes in a single sample and
each row contains expression levels of a single gene in dif-
ferent samples. These files may have many negative values
which are replaced by using a threshold of θl and a ceiling of
θh. If a value is less than θl , it is replaced by θl; similarly, if

Table 1: Microarray data sets used in experiments
Data Set #Genes Classes #Samples
Lung Carcinoma 3312 5 203
Brain Cancer 4434 2 50
Prostate Cancer 5966 2 102

a value is greater than θh, it is replaced by θh. Missing val-
ues, if any, are determined by applying kNN method. Then
variation filters are applied to exclude those genes which vi-
olate max(g)−min(g) > ∆ and max(g)/min(g) > Ω. Dif-
ferent researchers have applied different values of θl, θh,∆
and Ω for their microarray data. Thereafter, normalization
method is applied on the values. In our experiments, we lin-
early scale all expression values in the range [0,1] due to the
requirement of LIBSVM which we have used as SVM source
code. If y is a gene expression value of a gene g, the scaled

value would be: y−min(g)
max(g)−min(g)

where min(g) and max(g)

are the minimum and maximum values of gene expressions
of g among different samples.

5.2 Data Sets
For our experiments, we have chosen three microarray

data sets of cancer research. These include Lung Carci-
noma [4], Brain Cancer [16] and Prostate Cancer [24] data
sets. Summary of the data sets are shown in table 1 and the
details are given in next subsections. In the table, #Genes
denotes the number of genes that are left after preprocess-
ing.

5.2.1 Lung Carcinoma Data Set
The Lung Carcinoma data set [4] contains mRNA expres-

sion levels corresponding to 12,600 transcript sequences in
203 lung tumor and normal tumor samples. The 203 sam-
ples consist of 139 lung adenocarcinomas (AD), 21 squa-
mous (SQ) cell carcinoma cases, 20 pulmonary carcinoid
(COID) tumors and 6 small cell lung cancers (SCLC), as
well as 17 normal lung (NL) samples. Negative gene ex-
pressions have been replaced by setting θl = 0. Using a
standard deviation threshold of 50 expression units, only
3312 genes were selected out of 12600. The original data
sets are available at http://research.dfci.harvard.edu/
meyersonlab/lungca.html. We then rescale the data and
divide it randomly into mutually exclusive training set con-
sisting of 102 samples and test set of 101 samples. We treat
this data set as a 5-class(AD,SQ,COID,SCLC and NL) clas-
sification problem. When we calculate overall accuracy, we
treat all the 203 samples as training data.

5.2.2 Brain Cancer Data Set
The Brain Cancer data set [16] contains expression lev-

els of 12625 genes of 50 gliomas samples: 28 glioblastomas
and 22 anaplastic oligodendrogliomas divided into two sub-
sets of classic and non-classic gliomas. The classic sub-
set contains 14 glioblastomas and 7 anaplastic oligoden-
drogliomas with classic histology and it is used as a training
set to predict the classes of clinically common, histologi-
cally non-classic samples consisting of 14 glioblastomas and
15 anaplastic oligodendrogliomas samples. The complete
set of data is available at http://www-genome.wi.mit.edu/
cancer/pub/glioma. After preprocessing of the data with
θl = 20,θh = 16000, ∆ = 100 and Ω = 3, only 4434 genes
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were left. Then we scale the values as stated above. During
calculation of overall LOOCV accuracy, we treat all the 50
samples as training data.

5.2.3 Prostate Cancer Data Set
The initial data set of prostate cancer [24] contains gene

expressions profiles which were derived from 52 prostate tu-
mors and 50 non-tumor prostate (normal) samples using
oligonucleotide microarrays containing probes for approxi-
mately 12,600 genes and ESTs. The independent data set
contains 8 normal and 27 tumor prostate samples. Raw
data of initial set are avaiable at http://www-genome.wi.
mit.edu/MPR/prostate. Raw expression values are prepro-
cessed with θl = 10,θh = 16000, ∆ = 50 and Ω = 5. After
preprocessing, only 5966 genes were left which are then nor-
malized. Due to unavailability of the independent data set,
we divide the initial set into mutually exclusive training and
test sets, each containing 50% of the total samples; but dur-
ing overall accuracy estimation, we treat all 102 samples as
a training set.

5.3 Experimental Setup
We generate initial population randomly with the proba-

bility of each gene being selected 0.5 (equal probability of
being selected or not). The parameters of gene selection al-
gorithm are: population size=100, offspring size=100, max-
imum number of generation=100, total run=20, w = 0.75
and α = 0.1. The value of w is chosen to give more empha-
size on accuracy rather than on number of selected genes be-
cause the ultimate objective of this research is the accurate
classification of patient samples. We could increase the pop-
ulation size, but it would take more time to get experimental
results. For smaller data sets, we have found that increasing
population size does not affect the acquired classification ac-
curacy adversely. Our replacement strategy is CHC in which
we combine all the old population and the newly generated
offspring and then select the best 100 individuals for the
next generation. For calculation of marginal probability, we
select the best half of the population. For SVM, we use RBF
kernel with values of C=32, γ = 0.0078125; these values are
obtained by applying grid search on the training data as rec-
ommended in [5]. Our gene selection algorithm terminates
when there is no improvement of the fitness value of the best
individual in 10 consecutive generations or maximum num-
ber of generations has passed. In each run, after termination
of the algorithm, instead of taking the best one that has the
highest fitness value, we take all the gene subsets from the
population that have the best training accuracy (fitness may
be different) and calculate test accuracy of each gene subset
by SVM classifier. That is why, the number of gene subsets
selected by our method are greater than or equal to 20.

5.4 Experimental Results
In this section, we present the experimental results on the

data sets. Some experimental results are available online at
http://www.iba.k.u-tokyo.ac.jp/english/ Supplement/

BioSupplement.html. Due to space limitations, we will use
probe set# (feature#) instead of gene name to indicate
a gene. Before the implementation of our gene selection
method on the data sets, we run SVM on the data containing
single gene expression values to determine whether a single
gene exists which can classify all the (training+test) sam-
ples without any error. Our findings are summarized in table

Table 2: Single gene LOOCV accuracy
Data Set Feature# Accuracy

32254 at 76.35
Lung Carcinoma 34847 s at 76.35

37588 s at 76.35
1113 at 66.0

Brain Cancer 35169 at 64.0
40367 at 64.0
37720 at 83.33

Prostate Cancer 37639 at 78.43
33674 at 77.45

2. The results are of one run. We have not found any gene
that can classify all the samples (train+test) of each data set
without any error. For Lung Carcinoma data set, we find
three genes: 32254 at, 34847 s at and 37588 s at ; each of
them obtains maximum 76.35% classification accuracy while
genes 32076 at, 33328 at, 35221 at, 36851 g at, 37160 at,
38475 at, 39271 at and 39401 at each produces the lowest
67.98% accuracy on the same data set. For Brain Cancer,
we find the top three genes 1113 at, 35169 at and 40367 at
that obtain respectively 66%, 64% and 64% overall accuracy
while two genes 39079 at and 40090 at each produces the
lowest 22% overall accuracy on the data set. Three genes
37720 at, 37639 at and 33674 at produce 83.33%, 78.43%
and 77.45% overall accuracy respectively on Prostate Cancer
data set. For this data set, the lowest accuracy (=33.33%)
is obtained by the expression values of the gene 39068 at.
In table 3, the best classification accuracy on training and

test data and the number of genes selected are shown. The
highest training accuracy on Lung Carcinoma data is 99.02%
which is obtained with a gene subset having 80 genes, and
the corresponding test accuracy is 93.14%. The maximum
test accuracy on this data set is 94.12%, and the corre-
sponding training accuracy and the number of genes se-
lected are 96.08% and 107, respectively. Out of 31 gene
subsets selected by our algorithm in 20 runs, the lowest
number of genes in a subset is 40 which produces 96.08%
and 85.29% training and test accuracy, respectively. For
this data set, we also find four more gene subsets having
52, 61,70 and 51 genes which obtain the highest training ac-
curacy(=99.02%) but lower test accuracy (92.16%, 91.18%,
90.20% and 89.22%, respectively). On Brain Cancer data
set, we get 981 gene subsets in 20 runs each having 100%
training accuracy on 21 training samples but varying test
accuracy. Out of these, only 19 gene subsets get the highest
90.48% test accuracy. The top five gene subsets are shown in
figure 1. We get a gene subset having minimum three genes
{34679 at, 35622 at and 630 at} which produces 80.95% test
accuracy and 100% training accuracy. On Prostate Cancer
data, we get 177 different gene subsets after 20 runs. Of
these, we get 104 gene subsets with 100% training accuracy;
out of them, 11 gene subsets produce test accuracy≥ 90.20%
and the best gene subset has 24 genes that returns the high-
est 100% and 94.12% training and test accuracy, respec-
tively. The smallest number of genes selected by our algo-
rithm on this data set is 6 (31509 at, 34678 at, 34738 at,
37639 at, 38681 at and 40508 at) that returns 100% train-
ing and 82.35% test accuracy. The average experimental
results are shown in table 5. In the table, a value of the
form x ± y indicates average value x with standard devia-
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Table 3: Best results obtained by our gene selection method RPMBGA
Data set Best training accuracy Best test accuracy Minimum number

of selected genes
99.02 94.12 40

Lung Carcinoma (Test accuracy=93.14) (Training accuracy=96.08) (Training Accuracy=96.08)
(#Genes=80) (#Genes=107) (Test accuracy=85.29)

100.0 90.48 3
Brain Cancer (Test accuracy=90.48) (Training accuracy=100.0) (Training accuracy=100.0)

(#Genes=6) (#Genes=6) (Test accuracy=80.95)
100.0 96.08 6

Prostate Cancer (Test accuracy=94.12) (Training accuracy=98.04) (Training accuracy=100.0)
(#Genes=24) (#Genes=13) (Test accuracy=82.35)

Table 4: Gene subsets that produce the best overall
classification accuracy

Data Set Best gene subset with feature#  

Lung  
Carcinoma 
(67)  

1085_s_at, 1252_at, 1295_at, 1313_at, 
1368_at, 1488_at, 1822_at, 1823_g_at, 
1975_s_at, 2089_s_at, 31559_at, 
319_g_at, 32169_at, 32843_s_at, 
33027_at, 33272_at, 33274_f_at, 
33282_at, 33341_at, 33505_at, 
33678_i_at, 33699_at, 33826_at, 
33859_at, 34699_at, 35027_at, 
35125_at, 35774_r_at, 36096_at, 
36162_at, 36703_at, 36889_at, 
37000_at, 37021_at, 375_at, 37505_at, 
37669_s_at, 37697_s_at, 37722_s_at, 
37826_at, 37976_at, 38048_at, 
38054_at, 38118_at, 38166_r_at, 
38417_at, 38708_at, 39018_at, 
39058_at, 39089_at, 39163_at, 
39448_r_at, 39561_at, 39581_at, 
39649_at, 39660_at, 39720_g_at, 
39790_at, 40324_r_at, 41146_at, 
41375_at, 41449_at, 41634_at, 
41834_g_at,552_at, 903_at, 977_s_at 

Brain 
Cancer (4)  

1937_at, 36164_at, 38791_at, 392_g_at 

Prostate 
Cancer 
(17)   

1295_at,1794_at,1818_at, 31389_at, 
31444_s_at, 35726_at, 37437_at, 
38026_at, 38158_at, 38196_at, 
38630_at, 39750_at, 40436_g_at, 
40491_at, 41106_at, 41300_s_at, 
41867_at 

 

Accession#
1312_at
1318_at
32230_at
32697_at
33879_at
34214_at
35163_at
35622_at
35909_at
36526_at
36786_at
36921_at
37578_at
38063_at
38791_at
39055_at
41016_at
41325_at
840_at
888_s_at

Gene subsets

Figure 1: Top five gene subsets that produce 100%
training and 90.48% test accuracy on Brain Cancer
Data

tion y. The overall results of 20 runs on each data set
is shown in table 6. Here we run our algorithm with the
settings of the parameters as described before, treat whole
data (training+test) as training set and calculate accuracy
through leave-one-out-cross-validation. In the table, the
number of genes in the subset that produces the best overall
accuracy, and the overall accuracy returned by the subset of
minimum number of genes are reported in parentheses. The
best overall accuracy returned by our method on Lung Car-
cinoma, Brain Cancer and Prostate Cancer data sets are
98.03%, 96.0% and 98.04% with subsets of 67, 4 and 17
genes, respectively. The gene subsets are shown in table 4.
The smallest numbers of genes selected by our method from
these data sets are 41, 4 and 12 which return 97.54%, 96.0%
and 96.08% overall accuracy, respectively on the data sets.
The average overall accuracy and the number of genes se-
lected are also shown in the table. Interestingly, we observe
that the gene subset that produces the best overall accu-
racy on each data set does not include any top ranked gene
of table 2, and either overall average or the best accuracy
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Table 5: Average accuracy returned and number of
genes selected by RPMBGA
Data Training Test #Genes
Set Accuracy Accuracy Selected
Lung 97.03 ± 1.25 89.15 ± 3.20 69.03 ± 20.10
Carcinoma
Brain 100± 0 72.50 ± 5.90 8.48 ± 4.94
Cancer
Prostate 99.03 ± 1.27 84.29 ± 4.57 17.14 ± 7.40
Cancer

Table 6: LOOCV overall accuracy on data sets
Data Accuracy #Genes

Average Best Average Best
Lung 97.30± 98.03 73.09± 41
Carcinoma 0.44 (67) 21.83 (97.54)
Brain 93.17± 96.0 20.55± 4
Cancer 2.02 (4) 7.51 (96.0)
Prostate 96.62± 98.04 48.52± 12
Cancer 0.62 (17) 47.07 (96.08)

on each data set is superior to the best accuracy produced
by single gene. From this, we can infer that there may exist
some kinds of correlations among the selected genes of the
best subset; when we take a single gene from the subset, the
correlation breaks down and it does not produce good accu-
racy on the data set.
In table 7, we compare our results with those by apply-

ing signal-to-noise statistics and k-Nearest Neighbor classi-
fier. In the table, our results are reported in parentheses,
and ‘NA’ indicates ‘NOT AVAILABLE’. To make consistent
comparison, we have redone signal-to-noise statistics to se-
lect the top rank genes and applied kNN with k = #samples

#classes
.

Following original literature, we have selected the top 100,
20 and 16 genes from the data sets of Lung Carcinoma, Brain
Cancer and Prostate Cancer, respectively. The top genes of
Brain Cancer have been selected from the training data only
while others have been selected from whole data. The over-
all accuracy obtained on Lung Carcinoma data containing
203 samples divided into 5 classes is 71.43%. Our method
RPMBGA returns 98.03% overall accuracy on the same data
using a 67-gene subset. (Note that in the original literature,
Bhattacharjee et al. [4] classified a subset of 156 samples of
adenocarcinoma and normal lung tissues into 8 types. They
used signal-to-noise statistics to select the top 100 genes
from the 675-gene set that they had used for hierarchical
clustering for input into a LOOCV kNN classifier. They ob-
tained 87% LOOCV accuracy on the data set.) In the case of
Brain Cancer data, the accuracy on the 21 training samples
of classical gliomas and on 29 test samples of non-classical
gliomas by the top 20 genes selected by S2N statistics are
95.24% and 58.62%, respectively. We find 100% classifica-
tion accuracy on training data and 90.48% accuracy on test
data with a 6-gene subset. Finally, comparative results on
Prostate Cancer Data are provided. The 16-gene model of
S2N produces 93.14% training accuracy whereas our 17-gene
subset (the genes of the subset are shown in table 4), ob-
tained by RPMBGA, gets 98.04% training accuracy. In the
original literature, the reported test accuracy is 86%. Due
to unavailability of the data of independent test samples, we

Table 7: Experimental results of S2N statistics with
kNN classifer (our results are in parentheses)

Data Accuracy(%) #Genes
Set Training Test Overall selected
Lung [4] NA NA 71.43 100
Carcinoma (98.03) (67)
Brain 95.24 58.62 NA 20
Cancer[16] (100.0) (90.48) (6)
Prostate 93.14 86.0 NA 16
Cancer[24] (98.04) NA (17)

are unable to present our test accuracy. In each case, our
method gets better accuracy than rank based method. It is
our gene selection algorithm, not SVM, that produces the
better accuracy on the data sets because SVM can not dis-
tinguish between relevant and non-relevant genes; it is used
as a classifier to classify data. When SVM is applied on the
data without any gene selection, it produces accuracy much
lower than the accuracy (training/test/overall) we have re-
ported in this paper. It is very natural that the probabil-
ity of finding a good gene subset from a collection of many
(hundreds) possible solutions is higher than the probability
of finding that one from a limited number of solutions. How-
ever, subsets with higher number of genes do not produce
the best accuracy because there are many irrelevant genes
in microarray data which act negatively on the classification
accuracy obtained by other genes. Starting from the initial
population, our gene selection method successively reduces
many of those irrelevant genes and finally terminates with
a population having very small number of genes selected in
each individual.

6. SUMMARY AND CONCLUSION
In this paper, we propose and apply our gene selection

method RPMBGA to the classification of samples of three
microarray data sets. We assume that very few genes are
needed to classify cancer samples and smaller size gene sub-
set may provide more insight into the data. To this end,
starting from an initial population of different gene subsets
having each subset on the average half of genes selected, we
reduce the number of selected genes in successive genera-
tions by reducing the probability of a gene being selected.
As a classifier, we have used SVM which has the capability
of handling thousands of genes with a smaller number of
training samples. Applying our method to three microarray
data sets, we have found that it is possible to get subsets
with smaller number of genes that produce better classifi-
cation accuracy (which may or may not be the best one) as
compared to rank based gene selection method with KNN
classifier.
During fitness calculation of a gene subset, the two ob-

jectives of the problem: selection of minimum number of
genes and maximization of classification accuracy have been
scalarized in our method, and the smaller one of the two sub-
sets having same training accuracy will always be selected
due to implicit penalty on the larger one. Our method is
also able to obtain multimodal solutions of the problems.
We report all the gene subsets that produce the same classi-
fication accuracy on the training data after each run of the
algorithm rather than the one having highest fitness value
because some of these gene subsets may be highly corre-
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lated with distinction of different training and test samples
but not biologically relevant to cancer diagnosis; only bi-
ologists/medical scientists can say which one of these gene
subsets is more biologically relevant to cancer diagnosis.
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